
 1 

Towards Accurate PAH IR Spectra Prediction: 

Handling Charge Effects with Classical and Deep 

Learning Models 

Babken G. Beglaryan, Aleksandr S. Zakuskin, Viktor A. Nemchenko, Timur A. Labutin * 

Lomonosov Moscow State University, 119234 Moscow, Russia 

E-mail: timurla@laser.chem.msu.ru 

ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) play a crucial role in astrochemistry, 

environmental studies, and combustion chemistry, yet interpreting their infrared (IR) spectra 

remains challenging due to similarity of spectral features of many molecules. Presumable presence 

of both neutral and charged PAHs in mixtures complicates spectra interpretation too. While first-

principles calculations provide accurate spectral predictions, their high computational cost limits 

scalability. This study employs machine learning (ML) to predict PAH IR spectra, emphasizing 

applicability of the developed models simultaneously for neutral and ionized molecules. Two 

models are introduced: a XGBoost model trained on Morgan fingerprints and a graph neural 

network (GNN) that employs molecular graph representations. Charged molecules are treated by 

incorporating one-hot or learnable NN encoding to molecular representations. Both models 

demonstrate excellent predictive capabilities, for the first time enabling fast and accurate 

prediction of charged PAHs IR spectra. While the XGBoost model demonstrates the highest 

accuracy achieved up to date, the GNN shows significant promise for future advancements due to 

the inherent capabilities of molecular graph representations. Remaining challenges, such as 
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scarcity of data on heteroatomic PAHs, and potential approaches of addressing them are also 

discussed in the manuscript. 

1. INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) and their physicochemical and spectral properties are 

of significant interest in the fields of astronomy,1, 2 environmental science,3, 4 and related fields, 

including sensor development5 and studies on optimization of combustion process to reduce PAHs 

emission.6, 7 Environmental studies have focused on PAHs due to their classification as hazardous 

pollutants, given their toxicity, mutagenicity, and carcinogenicity, which pose significant health 

risks.8 PAHs are widespread in the space, from circumstellar environments to planetary 

atmospheres and meteorites,9-12 making their investigation one of the main objectives in 

astrochemistry.13, 14  

Mid-infrared (IR) spectroscopy is one of the most widely used techniques for PAH analysis, 

enabling the characterization of their molecular structure during combustion processes.6, 7 It is also 

employed for monitoring the concentration profiles of specific hydrocarbons in air and water.5, 15 

The presence of PAHs in various astronomical objects, including emission, reflection and 

planetary nebulae,16-20 young stellar objects,21, 22 ultraluminous infrared galaxies23 has also been 

extensively investigated in the mid-IR range. These molecules play a dominant role in heating 

neutral gas, maintaining the ionization balance within molecular clouds, influencing star 

formation,13 and contributing to the production of carbon particles and fullerenes.24, 25 

Despite the importance and presumed abundance of PAHs, detailed studies remain limited due 

to the complexity of interpreting observed IR spectra from astronomical objects, polluted air, or 

combustion products. These spectra result from the cumulative contributions of tens or even 

hundreds of PAHs species.26, 27 Distinguishing signals from different PAHs is particularly 

challenging due to their spectral similarities. Moreover, the vast number of theoretically possible 

PAH structures and their various charged states further complicate the IR spectra interpretation, 

especially in case of astronomical data.13 Consequently, the development and application of 
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methods for systematically obtaining IR spectra for as many individual PAH molecules as possible 

are essential for their identification in the environment, ISM, and combustion products. 

IR spectra of individual PAHs can be obtained using both experimental and computational 

approaches. The experimental measurements of IR spectra for PAHs are limited due to challenges 

associated primarily with isolating and holding PAHs in the gaseous phase.13 In several studies, 

the infrared multiple photon dissociation (IRMPD) technique has been employed for recording the 

spectra of small PAH cations.28-31 Computational methods are extensively used in combination 

with such experimental techniques.30, 32 In particular, density functional theory (DFT), is employed 

to calculate PAHs IR spectra.33 However, as the molecular mass increases, the DFT calculations 

become more complicated and resource-intensive. 

To accelerate the prediction of spectra, the application of machine learning (ML) models 

presents a promising approach. Machine learning has already found successful applications in two 

domains closely related to the prediction of PAH IR spectra: creating latent representations of 

molecular structure for further prediction of some properties and the prediction or interpretation 

of spectral data. Various ML approaches are already used to predict the properties of individual 

molecules, including solubility,34, 35 toxicity,36, 37 melting points,38 as well as for screening 

molecules for antibacterial activity.39 It is important to note that opinions differ on the relative 

effectiveness of traditional descriptor-based machine learning methods versus graph neural 

networks for molecular property prediction. One review suggests that classical models trained on 

molecular descriptors typically achieve higher accuracy with significantly lower computational 

cost,40 while other highlight several successful applications of graph neural networks in this field.41 

Given these contrasting perspectives, it is reasonable to explore both approaches to address our 

research objectives. ML has also been successfully applied for predicting the spectral 

characteristics of various sources,42, 43 including the prediction of IR-spectra of organic 

molecules.44 Several studies have focused on solving the inverse problem of infrared spectrum 

interpretation and identifying possible fragments and functional groups in organic molecules.45, 46 
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McCarthy and Lee47 proposed a method for molecular identification based on experimental 

rotational data using deep learning networks. Kovács et al.48 previously demonstrated the potential 

of ML for predicting the IR spectra of neutral PAHs using multilayer perceptron (MLP) and 

random forest model. Despite the success of neural networks to bypass expensive DFT calculations 

and achieve high-quality predictions for numerous molecules, this approach has excluded ionized 

molecules from training. More importantly, it prevents the prediction of their spectra, even though 

they are crucial for identifying emitters and constraining the physical properties of the irradiating 

source in astrophysical studies.49 

In this study, we focus on leveraging the significantly expanded PAHs spectral data to enable 

the prediction of IR spectra for the widest possible range of molecules, with a particular emphasis 

on ionized species. To achieve this, we propose the implementation of two machine learning 

techniques combined with capacious representations of molecular structure and ionization state 

for predicting the IR spectra of PAHs. The first approach employs a classical ML model based on 

gradient boosting—XGBoost.50 The second approach applies a graph neural network.51 Both 

methods are capable of providing state-of-the-art results at the moment, advancing the quality of 

predicted PAH IR spectra, but have different peculiarities that define possible directions of further 

development. 

2. METHODOLOGY  

2.1. Database and data preprocessing.  

We gathered data from the publicly available NASA Ames PAH IR Spectroscopic Database 

(version 3.20).52 The chemical structure of the PAH molecules in the database is represented in 

the form of atomic coordinates (XYZ format). Most of the PAH IR spectra are calculated using 

DFT, with only a dozen of molecules having experimentally recorded spectra. The low 

representativeness of experimental data (only 84 unique spectra) prevents training models solely 

on them. Another challenge pertains to the noticeable discrepancies between DFT-calculated and 

experimentally recorded spectra (Figure S1), raising concerns about the validity of their integration 
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into a unified dataset. Given that DFT-calculated spectra constitute the majority of the database, 

totaling 4233 unique spectra, this study uses exclusively theoretical spectra for model training, 

excluding experimental data from consideration. Since the IR spectra of various molecules consist 

of a variable number of signals (wavenumbers), we conducted resampling of the spectra to a 

unified resolution of ≈21.33 cm-1 across the range of 0.21–5376.69 cm-1 through spectral binning. 

To determine the optimal number of bins, we calculated the average percentage of non-empty bins 

for each molecule. With 252 bins the average percentage of non-empty bins is approximately 50%. 

It means that each molecule is well-represented across the spectral range. The resulting spectral 

resolution of 21.33 cm-1 is very close to that used by Kovács et al.48 – 21.39 cm-1. We observed 

that even after spectral binning, each spectrum still contains a large gap between 1500 and 

3000 cm-1. The low-frequency region of the spectrum contains most of the signals, while the high-

frequency part includes only a few. The high-frequency region (from ≈3000 cm-1) corresponds 

primarily to stretching vibrations along the C-H bonds or those associated with functional groups 

and radicals,13, 52, 53 such as -CH3, -OH, -CH2•. Meanwhile, signals in the low-frequency region, 

up to approximately 1500 cm-1, are primarily attributed to deformation vibrations in aromatic 

rings. As the gap region contains zero-value points, the low-frequency region (105 bins from 0.21 

to 2219.07 cm-1) was selected as the target for machine learning predictions in this study, as it 

encompasses the majority of spectral signals. 

The XYZ format provided in the database52 is not straightforward regarding the molecular 

structure, as it does not contain direct information on the bonds between atoms and other atom 

properties, but only their coordinates. Therefore, it lacks crucial information for spectra prediction. 

There are numerous molecular representations that reflect structural formula. One such method is 

the Simplified Molecular Input Line Entry System (SMILES) representation.54 Molecular 

SMILES strings store information about atom types and properties, bond types, stereochemistry, 

and aromaticity. Conversion of molecules from XYZ format to SMILES can be performed using 

the functionality of the RDKit library55 as well as with OpenBabel.56 The initial database consists 
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primarily of hydrocarbons, but it also includes a few PAHs that are dehydrogenated or 

heterocyclic. While the presence of these molecules does not hinder the format conversion process 

in general, in some cases one or the other tool could not handle conversion correctly. Therefore, 

to transform as many molecules as possible from XYZ to SMILES, we had to use both RDKit and 

OpenBabel conversion algorithms. The database also contains samples that are complexes of 

PAHs with magnesium and iron ions, such as Mg+, Fe+, Mg+2 and Fe+2. Since the interaction 

between the metal ion and the neutral PAH molecule is primarily electrostatic,57, 58 it is not possible 

to include such information in SMILES. Therefore, we decided to include such molecules by 

designating the interaction in these complexes as an "unspecified" bond between the iron or 

magnesium ion and a carbon atom in a specified ring, depending on the ion’s position in the 

molecule according to the database52 (Figure S2). However, the database still included molecules 

for which valid SMILES representations could not be generated by any library, as well as instances 

where identical SMILES corresponded to different molecular structures. These molecules were 

excluded from the dataset, resulting in a final processed set consisting of 4137 unique molecules. 

2.2. Train test split.  

An important aspect of data in NASA Ames PAH IR Spectroscopic Database is the presence of 

a notable number of molecular ions, comprising nearly a third of the dataset (Figure 1). But the 

delocalized molecular charge cannot be described by topological descriptors, including SMILES, 

so the search for an alternative approach for charge encoding was a separate task, that will be 

discussed in the following sections. Figure 1 also shows a significant decrease in the number of 

molecules as the number of constituent heavy atoms increases above the values of ≈50-70. 
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Figure 1. Distribution of molecules by charge and size. The number at each violin plot represents 

the total number of molecules of the given charge. 

Both distributions across charges and the number of atoms must be considered when partitioning 

the data into training, validation, and test sets to ensure the preservation of the original distributions 

across all three subsets. To achieve this, we propose a custom train-test split method. First, the 

dataset is divided into quarters based on the number of atoms in molecules. Subsequently, within 

each quarter, the molecules of each charge are distributed into the training, validation, and test 

subsets in 70:15:15 ratio (number of molecules: 2898, 620, 619 respectively) for GNN and into 

the training and test subsets in 85:15 ratio (number of molecules: 3518, 619 respectively) for 

XGBoost (test subset is the same for GNN and XGBoost models), ensuring that the original charge 

state distribution is preserved in each subset. 

2.3. Molecular Descriptors and models 

2.3.1. Classical machine learning approach. Prior to any learning step, SMILES 

representations of molecules should be converted into a numerical format suitable for input into a 

model. Usually, molecular descriptors are employed as numerical representations of a molecule's 

structural and chemical characteristics in tasks of similarity search or ML prediction of properties. 

These descriptors encode comprehensive information on the types and properties of constituent 
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atoms, their local environments, and bonding patterns. Among these methods are molecular 

fingerprints, which result from fragmenting molecules and encoding these fragments into bit 

vectors. The position of a number in a molecular fingerprint corresponds to a structural fragment, 

while the value indicates the number of such fragments or their absence. In this work, we use the 

Morgan Count Bit Vector (Figure 2), where bits represent the count of each fragment in molecule 

formed by Morgan's algorithm.59 The number of bits is a variable parameter that can be set directly, 

enabling precise control over the fingerprint's resolution and sensitivity in representing molecular 

features. This approach also avoids the challenges observed earlier48 with the molecular fingerprint 

generation, when the number of features grows rapidly and becomes difficult to control as the 

dataset expands. We set the number of bits for the Morgan Count Bit Vector equal to 2048, as this 

number of fragments provides detailed enough representation of the structure of each molecule in 

the dataset (Figure S3). 

To enable the distinction between molecular representations with varying charges, we used a 

one-hot encoding method. The charge of each molecule was converted into a 5-bit vector that was 

concatenated with the corresponding molecular fingerprint. Thus, each molecule is represented by 

a unique feature vector of length 2053. 

Figure 2. Molecular fragmentation into a bit vector: a) the structure of the molecule; b) molecular 

fingerprints; c) Morgan count bit vector 
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After data transformation, the molecular fingerprints were fed into the XGBoost model to predict 

the IR spectra. Hyperparameters optimization of the XGBoost model was done with the open-

access Optuna library60 with TPESampler and 5-fold cross-validation to ensure resource 

efficiency, model robustness and to prevent overfitting. The ranges of hyperparameter 

optimization, as well as the optimal values, are given in (Table S1). 

2.3.2 Graph Neural Network (GNN). Every molecule can be represented as a graph, defined 

as a set of nodes corresponding to the atoms in the molecule and edges indicating the connections 

between nodes, thus reflecting the chemical bonds (Figure 3). 

 

Figure 3. A molecular graph representation. The different bond types are marked as follows: 

yellow square – aromatic; black diamonds – single; green triangle – double. 

Graph neural networks (GNNs) are employed for interacting with molecular graphs and 

extracting valuable information. These networks rely on such operations as graph convolution and 
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message passing. GNNs receive vector representations of nodes and edges, as well as an adjacency 

matrix or pairwise connection tensors, which are encoded from atom and bond properties, such as 

atom type, bond type, charge, and hybridization, etc. The message-passing mechanism involves 

the exchange of information between adjacent nodes. Each atom is assigned an embedding vector 

that incorporates both its own features and the embeddings of the atoms to which it is chemically 

bonded. Through the convolution operation, messages are aggregated and averaged, leading to an 

update of atom embeddings at each convolutional layer. Additionally, bond embeddings, which 

facilitate message transmission between atoms, may also be included.51, 61 

The architecture of the graph neural network developed in this study is comprised of two primary 

components: a graph block and a fully connected block. The graph block consists of graph 

convolution layers enhanced with an attention mechanism,62 which computes weight coefficients 

for each neighboring atom. The Graph Attention Network (GAT) layer convolutions allow for 

varying contributions from each atom during the update of feature embeddings, thereby enabling 

the model to capture the differential influence of atoms within the molecular structure more 

effectively. For designing the GNN architecture, we employed the PyTorch Geometric library,63 

which provides a comprehensive set of tools for working with graph-structured data. At the output 

of the graph convolution block, the obtained node feature embeddings of each molecule are 

aggregated and pooled to form molecular (graph) fingerprints. Subsequently, the embeddings are 

processed through fully connected layers, resulting in the predicted IR spectrum at the output. The 

described architecture of the graph neural network is illustrated in Figure 4. 
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As well as in the case of classical ML models described above, the process of learning molecular 

embeddings does not account for molecular charge as graph representations are purely topological 

mappings of molecules. To encode the charges, we employed the learnable embeddings from the 

PyTorch library,64 which generate vector representations that are updated during the model's 

training process. These embeddings are concatenated with the molecular embeddings following 

the pooling stage. Optimization of GNN parameters, including the number of graph and linear 

layers, channel dimensions, and the number of heads in the GAT cell, was also performed using 

Optuna. 

2.4. Loss function and metrics 

Considering the complex structure of the targets (IR spectra), where both peak intensity and 

position are crucial and values within a peak are inherently correlated, the choice of the loss 

function is particularly important. It must ensure that the optimization process produces physically 

meaningful results while effectively minimizing the loss function. When choosing a loss function 

for the prediction of IR spectra of PAH molecules, it is essential to consider two major features: 

the accuracy of predicted signal position and the spectral shape, determined by the relative signal 

intensities and signal widths. Additionally, given the relatively small dataset size (4137 

molecules), it is advisable to select loss functions that are robust to outliers and provide strong 

generalization capabilities. Classical loss functions, such as Mean Absolute Error (MAE) and 

Mean Squared Error (MSE), while easy to interpret, are not well-suited under these conditions. 

Figure 4. Graph Neural Network Architecture 
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MSE is sensitive to outliers, whereas MAE may impose insufficient penalties on local deviations. 

Therefore, we prefer the Huber Loss function. It serves as a compromise between MAE and MSE: 

it behaves quadratically for small deviations and linearly for larger ones. This balance allows it to 

maintain robustness to outliers while simultaneously focusing on significant errors. The Huber 

Loss function is defined as follows:  

𝐿𝛿(𝑦, ŷ) =  {

1

2
∗ (𝑦 − ŷ)2, 𝑖𝑓 |𝑦 − ŷ| ≤ 𝛿,

𝛿 ∗ |𝑦 − ŷ| −
1

2
∗ 𝛿, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 |𝑦 − ŷ| > 𝛿,

  

where: 

y – target  

ŷ – predicted value 

δ - a hyperparameter that sets the threshold at which the loss function transitions from quadratic 

to linear. Another function that combines quadratic and linear behavior is the Pseudo-Huber Loss: 

𝐿𝛿(𝑦, ŷ) =  𝛿2(√1 + (
𝑦 − ŷ

𝛿
)2 − 1) 

Unlike Huber Loss, Pseudo-Huber Loss is a smooth function, providing a more gradual 

transition between MSE and MAE. 

Another important aspect is the selection of a metric that most accurately captures the difference 

between predicted and true values. If we consider the IR spectra represented as intensity vectors, 

the cosine similarity metric can be used to calculate the difference between them. It is computed 

as cos(𝐴, 𝐵) =  
𝐴∙𝐵

‖𝐴‖‖𝐵‖
, where 𝐴 ∙ 𝐵 is the dot product of vectors and ‖𝐴‖, ‖𝐵‖ are the norms of 

vectors A and B, respectively. Cosine similarity measures the angular convergence of vectors 

based on their orientation. For spectra represented by vectors with non-negative intensity values, 

cosine similarity ranges from 0 to 1, where 0 indicates that the vectors are orthogonal (the least 

similarity), and 1 means the vectors have the same direction (identical spectra). The advantage of 

cosine similarity lies in its sensitivity to signal position and relative intensities within spectra. It 

does not account for differences in absolute intensity values between two spectra, which is 
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particularly useful when spectra are not normalized to a single scale. Implementation of cosine 

similarity as a loss function in PyTorch65 is called Cosine Embedding Loss.  

Another metric for ML spectra prediction applied by Kovács et al.,48 is the Earth Mover's 

Distance (EMD), or alternatively the Wasserstein metric, evaluates the difference between two 

distributions (spectra) by defining "distance" as a measure of their dissimilarity. These 

distributions are thought of as histograms and EMD is interpreted as the minimum amount of work 

needed to redistribute values across bins until the two histograms are fully aligned. A lower EMD 

value indicates a higher similarity between the distributions. Mathematically, it is expressed as 

follows: 

𝐸𝑀𝐷(𝑎, 𝑏) =  ∑ | ∑ (𝑎𝑗 − 𝑏𝑗)|𝑗≤𝑖𝑖 , 

where: 

ai, bi – are the i-th elements of distributions a and b, respectively. Applied to spectra, EMD 

ensures that peak positions, including their relative alignment, are considered. This aspect can 

support more accurate reconstruction of the predicted spectral shapes. However, the absolute 

values of spectra intensity also contribute to EMD, making it essential to normalize the spectra 

beforehand to ensure optimal algorithm performance.  

3. RESULTS 

3.1. XGBoost and GNN predictions 

All the spectra predicted by XGBoost discussed in this section were obtained using the optimized 

model trained with the built-in Pseudo-Huber loss function. For a fair comparison of classic ML 

and GNN models, as well as for GNN optimization, we required the same metric. To determine 

the most suitable metric, we trained two instances of GNNs, optimized with EMD loss and Cosine 

Embedding Loss. Rather than focusing on their absolute predictive accuracy, we thoroughly 

analyzed patterns in their predictions to identify the most appropriate metric. 
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Figure 5. Predictions of PAH IR spectra using GNN trained with: a) Earth Mover's Distance 

(EMD); b) Cosine Embedding Loss as the loss function. 

Without delving into the numerical or statistical analysis of cosine similarity and EMD values, 

we observed that using EMD loss (Figure 5a) resulted in broader and less aligned predicted signals 

(red curves) compared to the true signals (green curves), particularly the most intense peaks. In 

contrast, training the model with Cosine Embedding Loss (Figure 5b) led to predictions that 

exhibited a closer alignment in both the shape and intensities of the target spectra. Absolute values 

of cosine similarity and EMD for cases a and b (Figure 5) show that cosine similarity metrics 

correlate better with the general ideas on the quality of predictions (match in peak position and 

signal shape with the target spectrum). For example, for the top-row molecule, cosine similarity 

indicates that model b prediction is more accurate (0.96 vs 0.74), while the EMD metric leads to 

opposite: EMD of 1.6 and 2.4 in case of a and b, respectively. But the discrepancies between the 

predicted and the target spectra in case of model a are more obvious: prediction exhibits worse 
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resolution between major peaks (800-1000cm-1), non-zero background from ≈1100 to 1500 cm-1 

and broader signals in general. The latter is of major importance since the overall spectral 

resolution (21.33 cm-1) is already far from ideal due to lack of data. Therefore, we chose cosine 

similarity as the metric function for all further studies, and we consider that it correctly indicates 

the quality of predicted spectra. 

Table 1. Predictive performance of XGBoost and GNN models. 

Model (Loss function) Cosine similarity 

XGBoost (Pseudo-Huber) 0.789 

GNN (Cosine Embedding Loss) 0.764 

GNN (Huber loss) 0.740 

GNN (EMD) 0.717 

 

The average values of cosine similarity on a common test set for all models are summarized in 

Table 1. The mean metric values reveal an expected trend for a group of GNNs, where the highest 

average cosine similarity is observed in the predictions made by the model trained using the Cosine 

Embedding Loss function. However, while it shows the best average prediction of all GNNs, the 

model trained with the Huber Loss excels in individual prediction accuracy, achieving the highest 

cosine similarity score for a single molecule (0.995 vs 0.992 for the one with Cosine Embedding 

Loss) and also mitigates the worst-case error giving the worst value of cosine similarity of 0.115 

opposed to 0.049 for the model with Cosine Embedding Loss. Despite these notable examples of 

the edge-cases when training the GNN with Huber Loss, it is evident that Cosine Embedding Loss 

is more suitable for predicting the IR spectra of PAHs due to its overall quality and consistency of 

results. The closeness of the results achieved by the XGBoost and GNN models (Table 1) 

demonstrates their ability to predict spectra with high accuracy. However, deeper insight into the 

nature of errors of both classes is required for recommendation of the best model. 

Table 2. Predictive performance of models based solely on structural representations of PAH 

molecules. 
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Molecular charge Cosine similarity 

 XGBoost GNN 

-1 0.742 0.705 

0 0.707 0.716 

+1 0.693 0.654 

+2 0.634 0.511 

+3 0.673 0.705 

Average 0.694 0.704 

 

To demonstrate the impact of charge on the spectra and to enable a comparison between the 

developed models as well as with the results of Kovács et al. study,48 we trained the models without 

inclusion of charge representation. This led to moderate prediction accuracy (Table 2), with 

average cosine similarity of 0.694 and 0.704 for XGBoost and GNN, respectively. These findings 

highlight the necessity of explicitly incorporating molecular charges into molecular 

representations.  

As a next step, we carefully considered the variability of molecules across their size and charge 

while defining encoding and splitting strategies, so the assessment of their efficacy is needed. We 

analyze IR spectra of structurally identical PAHs in different charge states from the test set to 

assess the models' ability to differentiate between charged and neutral molecules, identify their 

characteristic spectral features, and uncover patterns in the generated output. Figure 6 illustrates 

examples of such molecules and corresponding IR target (green) and predicted (red) by XGBoost 

and GNN spectra. These molecules are present in the test set in neutral, negatively, and positively 

charged forms. As distinct structural units, the three of them differ solely in size (basically, the 

number of aromatic rings) and share identical structural properties, consisting only of carbon and 

hydrogen atoms without any functional groups. 
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Figure 6. Prediction accuracy of IR-spectra for molecules with different charges - green line 

represents the target spectra, red line indicates the predicted spectra: a) XGBoost predictions; b) 

GNN predictions. 

The target IR spectra of molecules with varying charges show notable differences. The presented 

spectra of PAHs with a charge of (-1) contain two prominent signals near 1200 cm-1 and 1500 cm-

1, along with a smaller signal around 700 cm-1. The one at 1200 cm-1 has notable “splitting”. For 

positively charged PAHs (+1), the spectral features resemble those observed in the case of a 

negative charge. However, the signals are slightly shifted. Notably, the signal near 1200 cm-1 is 

less split compared to (-1) charge state. Another trend is observed with changes in PAH size: as 

the molecule size increases, the signals in the 1200 cm-1 region for cationic and anionic PAHs 

broaden and merge into a single peak. In the case of neutral molecules, the spectral pattern differs 

significantly. A strong, singular signal is present near 700 cm-1, with all other peaks being 

comparatively weaker. A much deeper discussion of assignment of spectral features across the IR-

range can be found elsewhere,53 but we focus primarily on the models’ capabilities to follow major 

trends. We can state that both the XGBoost and GNN models, trained on the corresponding 

representations, successfully recognize key features that allow them to distinguish between 

molecules charges, as clearly demonstrated in Figure 6. The high values of cosine similarity 

confirm the effectiveness of both charge encoding approaches. The GNN performs slightly better 

in predicting the shapes of signals of charged molecules, for instance, more accurately depicting 

the "splitting" of the 1200 cm-1 signal. This fact may be attributed to the enhanced representational 

capacity of graph embeddings, characterized by their higher dimensionality and learnable 

embeddings for molecular charge. At the same time, XGBoost provides more accurate predictions 

in the region of high wavenumbers (around 2000 cm-1), where no significant signals are present 

for these example molecules. In this region, the predictions of the GNN for charged molecules are 

noisy and exhibit small fluctuations. The models’ predictions also reflect differences in molecular 
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size. The predicted spectral shapes and relative intensities differ distinctly with the change of 

molecular size and follow the same descriptive trends that are given for the target spectra.  

Table 3. Mean metric value for each charge state 

Molecular charge Cosine similarity 

 XGBoost GNN 

-1 0.800 0.801 

0 0.794 0.766 

+1 0.763 0.739 

+2 0.736 0.541 

+3 0.824 0.847 

Average 0.789 0.764 

 

The mean cosine similarity on the test set across different charge states (Table 3) demonstrates 

a decline as the molecular charge increases from (0) to (+2). This trend aligns with the 

representativity of molecules in the dataset, as illustrated in Figure 1. The decrease in the total 

number of molecules in the train set with increasing charge is expected to diminish the models' 

learning capacity. However, the highest mean cosine similarity values are observed for molecules 

with charges of (-1) and (+3). Based on comparison of Table 2 and Table 3, we can conclude that 

the suggested approaches, based on one-hot encoding and learnable embeddings, demonstrate their 

effectiveness in capturing charge-related properties. 

A thorough consideration of the results revealed one possible reason for low prediction accuracy 

cases. The accuracy is influenced by the presence of heteroatomic molecules. It gets worse when 

heteroatomic PAHs are included, although they remain underrepresented, and the metric shows 

higher values when all molecules in the subset (corresponding to a single charge state) exhibit 

greater structural uniformity. The IR spectra of heteroatomic PAHs (e.g. those with O or N in 

aromatic rings) can vary significantly from those of ordinary PAHs, and since their representativity 

in the dataset is extremely low, the prediction results tend to deteriorate considerably when such 
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molecules are present in the test set. The number of neutral molecules containing nitrogen or 

oxygen atoms within aromatic rings or in functional groups in the test set is 9, compared to 17 for 

positively charged molecules (+1) and only 1 for negatively charged molecules (-1). Notably, the 

highest metric value across these three charge states is observed for the negatively charged 

molecules (-1), while the singly positively charged molecules (+1) exhibit the lowest metric value 

among these three charge states. The high cosine similarity observed for the (+3) charge state can 

be attributed to its limited representation in the dataset, with only one molecule in the test set and 

six in the training set, alongside the uniformity of molecules, as indicated by the absence of 

heteroatomic molecules among the (+3) PAHs. More discussion of predicting spectra of 

heteroatomic molecules will follow in section 3.2. 

3.2. The past, present, and future of PAH IR spectra prediction 

Firstly, and most importantly, we introduce a harmonious expansion of the concept of ML-based 

prediction of PAH IR spectra by addressing, for the first time, the problem of predicting spectra 

across different charge states of PAHs. Secondly, our approach to molecular representations – 

using Morgan Count Bit Vector for XGBoost – offers a more universal and efficient alternative to 

the previously used Morgan Fingerprints for PAH IR-spectra prediction.48 This representation 

provides a reduced dimensionality that can be controlled directly, enhancing its versatility. Finally, 

to ensure a statistically based comparison of the prediction quality we trained optimal instances of 

our XGBoost and GNN models, as well as the fully connected network proposed by Kovács et 

al.,48 and tested their performance on a unified test set composed exclusively of neutral PAH 

molecules. In the latter case, charged PAHs were excluded from the test set, as the model was not 

designed to account for molecular charge. The training set described in Section 2.2 was used for 

our models. The distributions of cosine similarity values on the test set are illustrated in Figure 7. 
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Figure 7. PAH IR spectra prediction accuracy by models: a) XGBoost; b) GNN; c) Fully 

Connected Neural Network proposed by Kovács et al.48. 

The higher mean cosine similarity values for both the XGBoost and GNN models than for fully 

connected neural network indicates the obvious benefits of suggested molecular and charge 

encodings as well as the model architecture in terms of average precision of neutral PAH IR spectra 

prediction. Analysis of quartiles ranges of these distributions provides some additional insights. 

The maximum achievable cosine similarity for a single molecule from the test set by the XGBoost 

and GNN models (0.992 and 0.989, respectively) exceeds that of the fully connected neural 

network (0.971). The maxima of probability density function (PDF) values are also located at 

higher metric values in the case of both of our models. A similar trend is observed at the third 

quartile and the median value ranges. However, the shape of PDF distribution remains nearly the 
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same across all three models. The situation differs in the lowest quarter, where most molecules 

from the underrepresented class of heteroatomic molecules are found. This range exhibits a 

relatively flat distribution with the highest Q1 (25% boundary) value for the XGBoost model, 

while the worst-case cosine similarity is comparable across all models with a slight advantage for 

the fully connected neural network. Indeed, upon examining the molecules with the lowest 

accuracy, a significant proportion of PAHs containing heteroatoms, either within the aromatic ring 

or as functional groups, is observed. Examples of structures and spectra of such molecules are 

presented in Figure 8. 

Figure 8. Predicted IR spectra by GNN for heteroatomic PAH molecules. 

Moreover, the group of PAHs with poorest prediction accuracy includes dehydrogenated 

molecules composed solely of carbon atoms. Since there is a limited number of heteroatomic PAHs 

in the dataset, to tackle the challenge of low prediction accuracy of the IR spectra of heteroatomic 

PAH molecules, we assumed that a transfer learning approach can be employed in future study. It 

would involve implementing a method commonly used in neural networks domain, where a pre-

trained on a large dataset model is further fine-tuned on a smaller but more specific. If one can 

select molecules structurally similar to PAHs, including those containing nitrogen and oxygen 

atoms, and apply a transfer learning technique, it might be possible to enhance IR spectrum 
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predictions not only for heteroatomic PAH molecules but for all PAHs in general. The primary 

task is to establish a criterion for evaluating a molecule's suitability, based on its structural 

similarity to PAHs, for the proposed approach. Additionally, the molecule's IR spectrum should 

be accessible. As mentioned earlier, the high-frequency region of the spectrum features signals 

influenced by stretching vibrations within functional groups (e.g., NH₂, OH). Including this 

spectral region may improve the model's predictive accuracy for heteroatomic PAHs. We have 

identified the primary limitations of our models and outlined the possible future direction for 

enhancing PAHs IR-spectra prediction. 

4. CONCLUSIONS 

We have demonstrated the predictive power of both classical ML approaches and graph neural 

networks trained on the largest dataset of DFT-calculated IR spectra of PAH molecules available 

to date. The XGBoost model currently represents the most effective approach for spectral 

prediction tasks, as evidenced by its consistently superior performance on average, and in extreme 

cases, compared to prior methodologies and the GNN model. 

Despite this, the GNN model shows significant promise for future advancements. Its potential 

lies in its inherently flexible and expressive molecular graph encoding framework, which 

facilitates detailed and nuanced representations of molecular structures. The GNN’s ability to 

incorporate transfer learning provides an opportunity to further improve its predictive performance 

and broaden its applicability. 

This study marks a step forward by enabling the prediction of PAH ion spectra through 

comprehensive encoding of molecular charge states. Accurate and detailed encoding has been 

shown to enhance the versatility and applicability of predictive models considerably. The achieved 

accuracy—both averaged across the independent test set and within specific charge states and 

molecular size categories—enables reliable prediction of spectra for a wide range of PAH 

structures. These advancements pave the way for precise modeling of PAH mixture spectra, 
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addressing the critical challenge of investigating the compositional properties of astronomical 

objects. 
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